
Dynamic Buffer Overflow Detection ∗

Michael Zhivich
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

mzhivich@ll.mit.edu

Tim Leek
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

tleek@ll.mit.edu

Richard Lippmann
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

lippmann@ll.mit.edu

ABSTRACT
The capabilities of seven dynamic buffer overflow detec-
tion tools (Chaperon, Valgrind, CCured, CRED, Insure++,
ProPolice and TinyCC) are evaluated in this paper. These
tools employ different approaches to runtime buffer over-
flow detection and range from commercial products to open-
source gcc-enhancements. A comprehensive testsuite was
developed consisting of specifically-designed test cases and
model programs containing real-world vulnerabilities. In-
sure++, CCured and CRED provide the highest buffer over-
flow detection rates, but only CRED provides an open-source,
extensible and scalable solution to detecting buffer over-
flows. Other tools did not detect off-by-one errors, did not
scale to large programs, or performed poorly on complex
programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.5 [Software Engineering]: Testing and De-
bugging; K.4.4 [Computers and Society]: Electronic Com-
merce Security

General Terms
Measurement, Performance, Security, Verification

Keywords
Security, buffer overflow, dynamic testing, evaluation, ex-
ploit, test, detection, source code

∗This work was sponsored by the Advanced Research and
Development Activity under Air Force Contract F19628-00-
C-0002. Opinions, interpretations, conclusions, and recom-
mendations are those of the authors and are not necessarily
endorsed by the United States Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2005 Workshop on the Evaluation of Software Defect Detection Tools2005,
June 12, Chicago, IL.

0

2

4

6

8

10

12

14

16

18

20

1/3/96 1/2/98 1/2/00 1/1/02 1/1/04

Exploit Date in ICAT Database

C
u

m
u

la
ti

v
e

 E
x

p
lo

it
s

BIND

Apache

Sendmail

WU-FTP

IIS

CodeRed

Welchia

Gaobot

Lion

Figure 1: Cumulative exploits in commonly used
server software.

1. INTRODUCTION
Today’s server software is under constant scrutiny and

attack, whether for fun or for profit. Figure 1 shows the cu-
mulative number of exploits found in commonly used server
software, such as IIS, BIND, Apache, sendmail, and wu-ftpd.
The stars indicate appearances of major worms, such as
Lion, CodeRed and Welchia. As the data demonstrates, new
vulnerabilities are still found, even in code that has been
used and tested for years. A recent analysis by Rescorla [18]
agrees with this observation, as it shows that vulnerabilities
continue to be discovered at a constant rate in many types
of software.

Buffer overflows enable a large fraction of exploits tar-
geted at today’s software. Such exploits range from arbi-
trary code execution on the victim’s computer to denial of
service (DoS) attacks. For 2004, CERT lists 3,780 vulnera-
bilities [3], while NIST reports that 75% of vulnerabilities in
its ICAT database are remotely exploitable, of which 21%
are due to buffer overflows [15]. Detecting and eliminating
buffer overflows would thus make existing software far more
secure.

There are several different approaches for finding and pre-
venting buffer overflows. These include enforcing secure
coding practices, statically analyzing source code, halting
exploits via operating system support, and detecting buffer
overflows at runtime [5]. Each approach has its advantages;
however, each also suffers from limitations. Code reviews, no
matter how thorough, will miss bugs. Static analysis seems



like an attractive alternative, since the code is examined
automatically and no test cases are required. However, cur-
rent static analysis tools have unacceptably high false alarm
rates and insufficient detection rates [24]. Operating system
patches, such as marking stack memory non-executable, can
only protect against a few types of exploits.

Dynamic buffer overflow detection and prevention is an
attractive approach, because fundamentally there can be
no false alarms. Tools that provide dynamic buffer over-
flow detection can be used for a variety of purposes, such
as preventing buffer overflows at runtime, testing code for
overflows, and finding the root cause of segfault behavior.

One disadvantage of using this approach to find errors in
source code is that an input revealing the overflow is re-
quired, and the input space is generally very large. There-
fore, dynamic buffer overflow detection makes the most sense
as part of a system that can generate these revealing inputs.
This evaluation is part of a project to create a grammar-
based dynamic program testing system that enables buffer
overflow detection in server software before deployment. Such
a testing system will use the dynamic buffer overflow detec-
tion tool to find buffer overflows on a range of automatically-
generated inputs. This will enable a developer to find and
eliminate buffer overflows before the faults can be exploited
on a production system. A similar testing approach is used
in the PROTOS project at the University of Oulu [13].

This paper focuses on evaluating the effectiveness of cur-
rent dynamic buffer overflow detection tools. A similar eval-
uation has been conducted by Wilander et al. [22], but it
focused on a limited number of artificial exploits which only
targeted buffers on the stack and in the bss section of the
program. Our evaluation reviews a wider range of tools and
approaches to dynamic buffer overflow detection and con-
tains a more comprehensive test corpus.

The test corpus consists of two different testsuites. Sec-
tion 3 presents the results for variable-overflow testsuite,
which consists of 55 small test cases with variable amounts
overflow, specifically designed to test each tool’s ability to
detect small and large overflows in different memory regions.
Section 4 presents the results for 14 model programs con-
taining remotely exploitable buffer overflows extracted from
bind, wu-ftpd and sendmail.

The rest of the paper is organized as follows: Section 2
presents an overview of the tools tested in this evaluation,
Sections 3 and 4 present descriptions and results for two dif-
ferent testsuites, Section 5 describes performance overhead
incurred by the tools in this evaluation, and Section 6 sum-
marizes and discusses our findings.

2. DYNAMIC BUFFER OVERFLOW
DETECTION TOOLS

This evaluation tests modern runtime buffer overflow de-
tection tools including those that insert instrumentation at
compile-time and others that wrap the binary executable
directly. This section presents a short description of each
tool, focusing on its strengths and weaknesses.

A summary of tool characteristics is presented in Table 1.
A tool is considered to include fine-grained bounds checking
if it can detect small (off-by-one) overflows. A tool compiles
large programs if it can be used as a drop-in replacement for
gcc and no changes to source code are needed to build the
executable; however, minimal changes to the makefile are

acceptable. The time of error reporting specifies whether
the error report is generated when the error occurs or when
the program terminates. Since program state is likely to
become corrupted during an overflow, continuing execution
after the first error may result in incorrect errors being re-
ported. Instrumentation may also be corrupted, causing
failures in error checking and reporting. If a tool can pro-
tect the program state by intercepting out-of-bounds writes
before they happen and discarding them, reporting errors at
termination may provide a more complete error summary.

2.1 Executable Monitoring Tools
Chaperon [16] is part of the commercial Insure toolset

from Parasoft. Chaperon works directly with binary exe-
cutables and thus can be used when source code is not avail-
able. It intercepts calls to malloc and free and checks heap
accesses for validity. It also detects memory leaks and read-
before-write errors. One limitation of Chaperon is that fine-
grained bounds checking is provided only for heap buffers.
Monitoring of buffers on the stack is very coarse. Some
overflows are reported incorrectly because instrumentation
can become corrupted by overflows. Like all products in the
Insure toolset, it is closed-source which makes extensions
difficult.

Valgrind [12] is an open-source alternative to Chaperon.
It simulates code execution on a virtual x86 processor, and
like Chaperon, intercepts calls to malloc and free that allow
for fine-grained buffer overflow detection on the heap. After
the program in simulation crashes, the error is reported and
the simulator exits gracefully. Like Chaperon, Valgrind suf-
fers from coarse stack monitoring. Also, testing is very slow
(25 – 50 times slower than running the executable compiled
with gcc [12]), since the execution is simulated on a virtual
processor.

2.2 Compiler-based Tools
CCured [14] works by performing static analysis to de-

termine the type of each pointer (SAFE, SEQ, or WILD). SAFE
pointers can be dereferenced, but are not subject to pointer
arithmetic or type casts. SEQ pointers can be used in pointer
arithmetic, but cannot be cast to other pointer types, while
WILD pointers can be used in a cast. Each pointer is in-
strumented to carry appropriate metadata at runtime - SEQ
pointers include upper and lower bounds of the array they
reference, and WILD pointers carry type tags. Appropriate
checks are inserted into the executable based on pointer
type. SAFE pointers are cheapest since they require only
a NULL check, while WILD pointers are the most expensive,
since they require type verification at runtime.

The main disadvantage of CCured is that the programmer
may be required to annotate the code to help CCured de-
termine pointer types in complex programs. Since CCured
requires pointers to carry metadata, wrappers are needed to
strip metadata from pointers when they pass to uninstru-
mented code and create metadata when pointers are received
from uninstrumented code. While wrappers for commonly-
used C library functions are provided with CCured, the de-
veloper will have to create wrappers to interoperate with
other uninstrumented code. These wrappers introduce an-
other source of mistakes, as wrappers for sscanf and fscanf

were incorrect in the version of CCured tested in this eval-
uation; however, they appear to be fixed in the currently-
available version (v1.3.2).



Tool Version OS Requires
Source

Open
Source

Fine-grained
Bounds
Checking

Compiles
Large
Programs

Time of Error
Reporting

Wait for
segfault

N/A Any No Yes No Yes Termination

gcc 3.3.2 Linux No Yes No Yes Termination
Chaperon 2.0 Linux No No No* Yes Occurrence
Valgrind 2.0.0 Linux No Yes No* Yes Termination

CCured 1.2.1 Linux Yes Yes Yes No Occurrence
CRED 3.3.2 Linux Yes Yes Yes Yes Occurrence
Insure++ 6.1.3 Linux Yes No Yes Yes Occurrence
ProPolice 2.9.5 Linux Yes Yes No Yes Termination
TinyCC 0.9.20 Linux Yes Yes Yes No Termination

Table 1: Summary of Tool Characteristics (* = fine-grained bounds checking on heap only)

C Range Error Detector (CRED) [19] has been de-
veloped by Ruwase and Lam, and builds on the Jones and
Kelly “referent object” approach [11]. An object tree, con-
taining the memory range occupied by all objects (i.e. ar-
rays, structs and unions) in the program, is maintained dur-
ing execution. When an object is created, it is added to
the tree and when it is destroyed or goes out of scope, it is
removed from the tree. All operations that involve point-
ers first locate the “referent object” – an object in the tree
to which the pointer currently refers. A pointer operation
is considered illegal if it results in a pointer or references
memory outside said “referent object.” CRED’s major im-
provement is adhering to a more relaxed definition of the
C standard – out-of-bounds pointers are allowed in pointer
arithmetic. That is, an out-of-bounds pointer can be used
in a comparison or to calculate and access an in-bounds ad-
dress. This addition fixes false alarms that were generated in
several programs compiled with Jones and Kelly’s compiler,
as pointers are frequently tested against an out-of-bounds
pointer to determine a termination condition. CRED does
not change the representation of pointers, and thus instru-
mented code can interoperate with unchecked code.

Two main limitations of CRED are unchecked accesses
within library functions and treatment of structs and arrays
as single memory blocks. The former issue is partially mit-
igated through wrappers of C library functions. The latter
is a fundamental issue with the C standard, as casting from
a struct pointer to a char pointer is allowed. When type
information is readily available at compile time (i.e. the
buffer enclosed in a struct is accessed via s.buffer[i] or
s ptr->buffer[i]), CRED detects overflows that overwrite
other members within the struct. However, when the buffer
inside a struct is accessed via an alias or through a type
cast, the overflow remains undetected until the boundary of
the structure is reached. These problems are common to
all compiler-based tools, and are described further in Sec-
tion 2.3.

Insure++ [16] is a commercial product from Parasoft
and is closed-source, so we do not know about its inter-
nal workings. Insure++ examines source code and inserts
instrumentation to check for memory corruption, memory
leaks, memory allocation errors and pointer errors, among
other things. The resulting code is executed, and errors are
reported when they occur. Insure’s major fault is its perfor-
mance overhead, resulting in slowdown factor of up to 250
as compared to gcc. Like all tools, Insure’s other limitation
stems from the C standard, as it treats structs and arrays

as single memory blocks. Since the product is closed-source,
extensions are difficult.

ProPolice [8] is similar to StackGuard [6], and outper-
formed it on artificial exploits [22]. It works by inserting
a “canary” value between the local variables and the stack
frame whenever a function is called. It also inserts appro-
priate code to check that the “canary” is unaltered upon
return from this function. The “canary” value is picked
randomly at compile time, and extra care is taken to re-
order local variables such that pointers are stored lower in
memory than stack buffers.

The “canary” approach provides protection against the
classic “stack smashing attack” [1]. It does not protect
against overflows on the stack that consist of a single out-
of-bounds write at some offset from the buffer, or against
overflows on the heap. Since ProPolice only notices the er-
ror when the “canary” has changed, it does not detect read
overflows or underflows. The version of ProPolice tested dur-
ing this evaluation protected only functions that contained
a character buffer, thus leaving overflows in buffers of other
types undetected; this problem has been fixed in later ver-
sions by including -fstack-protector-all flag that forces
a “canary” to be inserted for each function call.

Tiny C compiler (TinyCC) [2] is a small and fast C
compiler developed by Fabrice Bellard. TinyCC works by
inserting code to check buffer accesses at compile time; how-
ever, the representation of pointers is unchanged, so code
compiled with TinyCC can interoperate with unchecked code
compiled with gcc. Like CRED, TinyCC utilizes the “ref-
erent object” approach [11], but without CRED’s improve-
ments. While TinyCC provides fine-grained bounds check-
ing of buffer accesses, it is much more limited than gcc in
its capabilities. It failed to compile large programs such as
Apache with the default makefile. It also does not detect
read overflows, and terminates with a segfault whenever an
overflow is encountered, without providing an error report.

2.3 Common Limitations of Compiler-based
Tools

There are two issues that appear in all of the compiler-
based tools – unchecked accesses within library functions
and treatment of structs and arrays as single memory blocks.
The former problem is partially mitigated by creating wrap-
pers for C library functions or completely reimplementing
them. Creating these wrappers is error-prone, and many
functions (such as File I/0) cannot be wrapped.

The latter problem is a fundamental issue with the C stan-



dard of addressing memory in arrays and structs. According
to the C standard, a pointer to any object type can be cast
to a pointer to any other object type. The result is defined
by implementation, unless the original pointer is suitably
aligned to use as a resultant pointer [17]. This allows the
program to re-interpret the boundaries between struct mem-
bers or array elements; thus, the only way to handle the
situation correctly is to treat structs and arrays as single
memory objects. Unfortunately, overflowing a buffer inside
a struct can be exploited in a variety of attacks, as the same
struct may contain a number of exploitable targets, such as
a function pointer, a pointer to a longjmp buffer or a flag
that controls some aspect of program flow.

3. VARIABLE-OVERFLOW TESTSUITE
EVALUATION

The variable-overflow testsuite evaluation is the first of
two evaluations included in this paper. This testsuite is a
collection of 55 small C programs that contain buffer over-
flows and underflows, adapted from Misha Zitser’s evalua-
tion of static analysis tools [24]. Each test case contains
either a discrete or a continuous overflow. A discrete buffer
overflow is defined as an out-of-bounds write that results
from a single buffer access, which may affect up to 8 bytes
of memory, depending on buffer type. A continuous buffer
overflow is defined as an overflow resulting from multiple
consecutive writes, one or more of which is out-of-bounds.
Such an overflow may affect an arbitrary amount of mem-
ory (up to 4096 bytes in this testsuite), depending on buffer
type and length of overflow.

Each test case in the variable-overflow testsuite contains
a 200-element buffer. The overflow amount is controlled at
runtime via a command-line parameter and ranges from 0
to 4096 bytes. Many characteristics of buffer overflows vary.
Buffers differ in type (char, int, float, func *, char *)
and location (stack, heap, data, bss). Some are in contain-
ers (struct, array, union, array of structs) and elements are
accessed in a variety of ways (index, pointer, function, array,
linear and non-linear expression). Some test cases include
runtime dependencies caused by file I/O and reading from
environment variables. Several common C library functions
((f)gets, (fs)scanf, fread, fwrite, sprintf, str(n)cpy,
str(n)cat, and memcpy) are also used in test cases.

3.1 Test Procedure
Each test case was compiled with each tool, when re-

quired, and then executed with overflows ranging from 0
to 4096 bytes. A 0-byte overflow is used to verify a lack of
false alarms, while the others test the tool’s ability to detect
small and large overflows. The size of a memory page on the
Linux system used for testing is 4096 bytes, so an overflow
of this size ensures a read or write off the stack page, which
should segfault if not caught properly. Whenever the test
required it, an appropriately sized file, input stream or envi-
ronment variable was provided by the testing script. There
are three possible outcomes of a test. A detection signifies
that the tool recognized the overflow and returned an error
message. A segfault indicates an illegal read or write (or an
overflow detection in TinyCC). Finally, a miss signifies that
the program returned as if no overflow occurred.

Table 1 describes the versions of tools tested in our eval-
uation. All tests were performed on a Red Hat Linux re-

lease 9 (Shrike) system with dual 2.66GHz Xeon CPUs.
The standard Red Hat Linux kernel was modified to en-
sure that the location of the stack with respect to stacktop
address (0xC0000000) remained unchanged between execu-
tions. This modification was necessary to ensure consistent
segfault behavior due to large overflows.

3.2 Variable-overflow Testsuite Results
This section presents a summary of the results obtained

with the variable-overflow testsuite. The graph in Figure 2
shows the fraction of test cases in the variable-overflow test-
suite with a non-miss (detection or segfault) outcome for
each amount of overflow. Higher fractions represents better
performance. All test cases, with the exception of the 4 un-
derflow test cases, are included on this graph even though
the proportional composition of the testsuite is not repre-
sentative of existing exploits. Nonetheless, the graph gives
a good indication of tool performance. Fine-grained bounds
checking tools are highlighted by the “fine-grained” box at
the top of the graph.

The top performing tools are Insure++, CCured and CRED,
which can detect small and large overflows in different mem-
ory locations. TinyCC also performs well on both heap and
stack-based overflows, while ProPolice only detects contin-
uous overflows and small discrete overflows on the stack.
Since the proportion of stack-based overflows is larger than
that of heap-based overflows in our testsuite, ProPolice is
shown to have a relatively high fraction of detections. Chap-
eron and Valgrind follow the same shape as gcc, since these
tools only provide fine-grained detection of overflows on the
heap. This ability accounts for their separation from gcc on
the graph.

As the graph demonstrates, only tools with fine-grained
bounds checking, such as Insure++, CCured and CRED
are able to detect small overflows, including off-by-one over-
flows, which can still be exploitable. For tools with coarse
stack monitoring, a large increase in detections/segfaults oc-
curs at the overflow of 21 bytes, which corresponds to over-
writing the return instruction pointer. The drop after the
next 4 bytes corresponds to the discrete overflow test cases,
as they no longer cause a segfault behavior. ProPolice ex-
hibits the same behavior for overflows of 9–12 bytes due
to a slightly different stack layout. Tools with fine-grained
bounds checking also perform better in detecting discrete
overflows and thus do not exhibit these fluctuations. For
very large overflows, all tools either detect the overflow or
segfault, which results in fraction of non-miss outcomes close
to 1, as shown on the far right side of the graph.

4. REAL EXPLOIT EVALUATION
Previously, we evaluated the ability of a variety of tools

employing static analysis to detect buffer overflows [25].
These tools ranged from simple lexical analyzers to abstract
interpreters [9, 10, 20, 21, 23]. We chose to test these tools
against fourteen historic vulnerabilities in the popular In-
ternet servers bind, sendmail, and wu-ftpd. Many of the
detectors were unable to process the entire source for these
programs. We thus created models of a few hundred lines
that reproduced most of the complexity present in the orig-
inal. Further, for each model, we created a patched copy in
which we verified that the overflow did not exist for a test
input that triggered the error in the unpatched version. In
that evaluation, we found that current static analysis tools



Figure 2: Combined fraction of detections and segfaults vs the amount of overflow in bytes. A box highlights
tools with fine-grained bounds checking capabilities.

either missed too many of these vulnerable buffer overflows
or signaled too many false alarms to be useful. Here, we
report results for seven dynamic overflow detectors on that
same set of fourteen models of historic vulnerabilities. This
provides a prediction of their performance on real overflows
that occur in open-source servers.

4.1 Test Procedure
During testing, each unpatched model program was com-

piled with the tool (if necessary) and executed on an input
that is known to trigger the overflow. A detection signifies
that the tool reported an overflow, while a miss indicates
that the program executed as if no overflow occurred. A
patched version of the model program was then executed on
the same input. A false alarm was recorded if the instru-
mented program still reported a buffer overflow.

4.2 Real Exploit Results
Table 2 presents the results of this evaluation, which agree

well with those on the variable-overflow testsuite. Three
of the dynamic overflow detectors that provide fine-grained
bounds checking, CCured, CRED, and TinyCC, work ex-
tremely well, detecting about 90% of the overflows whilst
raising only one false alarm each. The commercial program
Insure, which also checks bounds violations rigorously, fares
somewhat worse with both fewer detections and more false
alarms. Notice that misses and false alarms for these tools
are errors in the implementation, and are in no way a fun-
damental limitation of dynamic approaches. For example,
in the case of CRED the misses are due to an incorrect
memcpy wrapper; there are no misses once this wrapper is
corrected. The CRED false alarm is the result of overly ag-
gressive string length checks included in the wrappers for
string manipulation functions such as strchr. None of the
tools are given credit for a segmentation fault as a signal of
buffer overflow (except TinyCC and gcc as this is the only
signal provided). This is why, for instance, ProPolice ap-

pears to perform worse than gcc. As a final comment, it is
worth considering the performance of gcc alone. If provided
with the right input, the program itself detects almost half
of these real overflows, indicating that input generation may
be a fruitful area of future research.

5. PERFORMANCE OVERHEAD
The goals of the performance overhead evaluation are two-

fold. One is to quantify the slowdown caused by using dy-
namic buffer overflow detection tools instead of gcc when
executing some commonly used programs. The other is to
test each tool’s ability to compile and monitor a complex
program. In addition, this evaluation shows whether the
tool can be used as a drop-in replacement for gcc, without
requiring changes to the source code. Minimal modifications
to the makefile are allowed, however, to accommodate the
necessary options for the compilation process.

Our evaluation tests overhead on two common utility pro-
grams (gzip and tar), an encryption library (OpenSSL) and
a webserver (Apache). For OpenSSL and tar, the testsuites
included in the distribution were used. The test for gzip

consisted of compressing a tar archive of the source code
package for glibc (around 17MB in size). The test for Apache
consisted of downloading a 6MB file 1,000 times on a loop-
back connection. The overhead was determined by timing
the execution using time and comparing it to executing the
test when the program is compiled with gcc. The results are
summarized in Table 3. Programs compiled with gcc exe-
cuted the tests in 7.2s (gzip), 5.0s (tar), 16.9s (OpenSSL)
and 38.8s (Apache).

Compiling and running Apache presented the most prob-
lems. Chaperon requires a separate license for multi-threaded
programs, so we were unable to evaluate its overhead. Val-
grind claims to support multi-threaded programs but failed
to run due to a missing library. Insure++ failed on the
configuration step of the makefile and thus was unable to



Chaperon Valgrind CCured CRED gcc Insure++ ProPolice TinyCC
b1 d d d d
b2 d d d d
b3 d d d d d d
b4 df df d d d df d df
f1 d d d d
f2 d df df d
f3 d d d d
s1 d d d d
s2 d d df d
s3 d d d
s4 d d d
s5 d d d df d d
s6 df d d
s7 d d d d d d
P (det) 0.14 0.29 0.93 0.86 0.43 0.71 0.21 0.93
P (fa) 0.07 0.07 0.07 0.07 0 0.29 0 0.07

Table 2: Dynamic buffer overflow detection in 14 models of real vulnerabilities in open source server code.
There are four bind models (b1–b4), three wu-ftpd models (f1–f3), and seven sendmail models (s1–s7). A
‘d’ indicates a tool detected a historic overflow, while an ‘f ’ means the tool generated a false alarm on the
patched version. P (det) and P (fa) are the fraction of model programs for which a tool signals a detection or
false alarm, respectively.

Tool gzip tar OpenSSL Apache

Chaperon 75.6 61.8
Valgrind 18.6 73.1 44.8
CCured
CRED 16.6 1.4 29.3 1.1
Insure++ 250.4 4.7 116.6
ProPolice 1.2 1.0 1.1 1.0
TinyCC

Table 3: Instrumentation overhead for commonly
used programs as a multiple of gcc execution time.
The blank entries indicate that the program could
not be compiled or executed with the corresponding
tool.

compile Apache. CCured likewise failed at configuration,
while TinyCC failed in parsing one of the source files during
the compilation step.

The performance overhead results demonstrate some im-
portant limitations of dynamic buffer overflow detection tools.
Insure++ is among the best performers on the variable-
overflow testsuite; however, it incurs very high overhead.
CCured and TinyCC, which performed well on both the
variable-overflow testsuite and the model programs, can-
not compile these programs without modifications to source
code. CCured requires the programmer to annotate sec-
tions of the source code to resolve constraints involving what
the tools considers “bad casts,” while TinyCC includes a C
parser that is likely incomplete or incorrect.

While CRED incurs large overhead on programs that in-
volve many buffer manipulations, it has the smallest over-
head for a fine-grained bounds checking tool. CRED can
be used as a drop-in replacement for gcc, as it requires
no changes to the source code in order to compile these
programs. Only minimal changes to the makefile were re-
quired to enable bounds-checking and turn off optimizations.
CRED’s high detection rate, ease of use and relatively small
overhead make it the best candidate for use in a comprehen-
sive solution for dynamic buffer overflow detection.

6. DISCUSSION
The three top-performing tools in our evaluation are In-

sure++, CCured and CRED. Insure++ performs well on
test cases, but not on model programs. It adds a large per-
formance overhead, and the closed-source nature of the tool
inhibits extensions. CCured shows a high detection rate and
is open-source; however, it requires rewriting 1–2% of code
to compile complicated programs [4]. CRED also offers a
high detection rate, and it is open-source, easily extensible
and has fairly low performance overhead (10% slowdown for
simple Apache loopback test). Its main disadvantage is lack
of overflow detection in library functions compiled without
bounds-checking. Like all compiler-based tools, CRED does
not detect overflows within structs in a general case; how-
ever, if the buffer enclosed in a struct is referenced directly,
then CRED detects the overflow.

As this study demonstrates, several features are crucial
to the success of a dynamic buffer overflow detection tool.
Memory monitoring must be done on a fine-grained basis,
as this is the only way to ensure that discrete writes and
off-by-one overflows are caught. Buffer overflows in library
functions, especially file I/O, often go undetected. Some
tools solve this problem by creating wrappers for library
functions, which is a difficult and tedious task. Recompil-
ing libraries with the bounds-checking tool may be a better
alternative, even if it should entail a significant slowdown.
Error reporting is likewise essential in determining the cause
of the problem because segfaults alone provide little informa-
tion. Since instrumentation and messages can get corrupted
by large overflows, the error should be reported immediately
after the overflow occurs.

Of all the tools surveyed, CRED shows the most promise
as a part of a comprehensive dynamic testing solution. It
offers fine-grained bounds checking, provides comprehensive
error reports, compiles large programs and incurs reasonable
performance overhead. It is also open-source and thus easily
extensible. CRED is likewise useful for regression testing to
find latent buffer overflows and for determining the cause of
segfault behavior.



7. REFERENCES

[1] AlephOne. Smashing the stack for fun and profit.
Phrack Magazine, 7(47), 1998.

[2] F. Bellard. TCC: Tiny C compiler.
http://www.tinycc.org, Oct. 2003.

[3] CERT. CERT/CC statistics.
http://www.cert.org/stats/cert stats.html, Feb. 2005.

[4] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the real world. In Proceedings
of the ACM SIGPLAN 2003 conference on
Programming language design and implementation,
pages 232–244. ACM Press, 2003.

[5] C. Cowan. Software security for open-source systems.
IEEE Security & Privacy, 1(1):38–45, 2003.

[6] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Conference,
pages 63–78, San Antonio, Texas, Jan. 1998.

[7] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy
and catalog of runtime software-fault monitoring
tools. IEEE Transactions on Software Engineering,
30(12):859–872, Dec. 2004.

[8] H. Etoh. GCC extension for protecting applications
from stack smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/, Dec.
2003.

[9] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Softw.,
19(1):42–51, 2002.

[10] G. Holzmann. Static source code checking for
user-defined properties. In Proc. IDPT 2002,
Pasadena, CA, USA, June 2002.

[11] R. W. M. Jones and P. H. J. Kelly.
Backwards-compatible bounds checking for arrays and
pointers in C programs. In Automated and
Algorithmic Debugging, pages 13–25, 1997.

[12] N. N. Julian Seward and J. Fitzhardinge. Valgrind: A
GPL’d system for debugging and profiling x86-linux
programs. http://valgrind.kde.org, 2004.

[13] R. Kaksonen. A functional method for assessing
protocol implementation security. Publication 448,
VTT Electronics, Telecommunication Systems,
Kaitoväylä 1, PO Box 1100, FIN-90571, Oulu,
Finland, Oct. 2001.

[14] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Proceedings of
Symposium on Principles of Programming Languages,
pages 128–139, 2002.

[15] NIST. ICAT vulnerability statistics.
http://icat.nist.gov/icat.cfm?function=statistics, Feb.
2005.

[16] Parasoft. Insure++: Automatic runtime error
detection. http://www.parasoft.com, 2004.

[17] P. Plauger and J. Brodie. Standard C. PTR Prentice
Hall, Englewood Cliffs, NJ, 1996.

[18] E. Rescorla. Is finding security holes a good idea?
IEEE Security & Privacy, 3(1):14–19, 2005.

[19] O. Ruwase and M. Lam. A practical dynamic buffer
overflow detector. In Proceedings of Network and

Distributed System Security Symposium, pages
159–169, 2004.

[20] P. Technologies. PolySpace C verifier.
http://www.polyspace.com/c.htm, Sept. 2001.

[21] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Network and Distributed
System Security Symposium, pages 3–17, San Diego,
CA, Feb. 2000.

[22] J. Wilander and M. Kamkar. A comparison of publicly
available tools for dynamic buffer overflow prevention.
In Proceedings of the 10th Network and Distributed
System Security Symposium, pages 149–162, Feb. 2003.

[23] Y. Xie, A. Chou, and D. Engler. Archer: using
symbolic, path-sensitive analysis to detect memory
access errors. In Proceedings of the 10th ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 327–336. ACM Press,
2003.

[24] M. Zitser. Securing software: An evaluation of static
source code analyzers. Master’s thesis, Massachusetts
Institute of Technology, Department of Electrical
Engineering and Computer Science, Aug. 2003.

[25] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from
open source code. SIGSOFT Softw. Eng. Notes,
29(6):97–106, 2004.


